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The evolution of the large-scale magnetic field in a turbulent flow of conducting fluid is considered in the
framework of a multiscale �2-dynamo model, which includes the poloidal and the toroidal components for the
large-scale magnetic field and a shell model for the small-scale magnetohydrodynamical turbulence. The
conjugation of the mean-field description for the large-scale field and the shell formalism for the small-scale
turbulence is based on strict conformity to the conservation laws. The model displays a substantial magnetic
contribution to the � effect. It was shown that a large-scale magnetic field can be generated by current helicity
even solely. The � quenching and the role of the magnetic Prandtl number �Pm� are studied. We have deter-
mined the dynamic nature of the saturation mechanism of dynamo action. Any simultaneous cross correlation
of � and large-scale magnetic field energy EB is negligible, whereas coupling between � and EB becomes
substantial for moderate time lags. An unexpected result is the behavior of the large-scale magnetic energy with
variation of the magnetic Prandtl number. Diminishing of Pm does not have an inevitable ill effect on the
magnetic field generation. The most efficient large-scale dynamo operates under relatively low Prandtl
numbers—then the small-scale dynamo is suppressed and the decrease of Pm can lead even to superequipar-
tition of the large-scale magnetic field �i.e., EB�Eu�. In contrast, the growth of Pm does not promote the
large-scale magnetic field generation. A growing counteraction of the magnetic � effect reduces the level of
mean large-scale magnetic energy at the saturated state.
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I. INTRODUCTION

Magnetic fields of celestial bodies are supposed to be gen-
erated by a hydromagnetic dynamo operating in a moving
electrically conductive medium �see, e.g. �1��. The corre-
sponding flows are characterized by huge values of govern-
ing parameters, so a direct numerical simulation �DNS� of
the corresponding magnetohydrodynamical �MHD� problem
with realistic governing parameters becomes impossible
even with modern numerical facilities. Due to rapid progress
of numerical facilities the parameter range accessible for
DNS is becoming increasingly wide. Some high-resolution
simulations of MHD turbulence �up to 10243 grid points�
have been performed �2,3�, which allows one to study the
small-scale dynamo processes in detail but does not elimi-
nate the difference of the accessible range from that of the
cosmic media �e.g., the magnetic Reynolds number for the
interstellar medium is Rm=106 even if the estimation of mag-
netic field losses is based on ambipolar diffusion�. Moreover,
even if a direct numerical simulation is performed, identifi-
cation of the large-scale features comparable with observa-
tional data is a nontrivial task �4�.

The theory of astrophysical dynamos was mainly devel-
oped in the framework of the mean-field approach �5�. The
mean-field theory is based on the so-called two-scale ap-
proximation, which suggests that the magnetic field consists
of the large-scale field B and the small-scale fluctuations b,
and that the velocity field is represented as the sum of the
mean-field motion V and velocity fluctuations u. Bearing
this in mind some governing equations for large-scale com-
ponents are evaluated. The transport coefficients in the equa-
tions contain some averaged information concerning the

small-scale components parametrized in terms of B and V.
This approach yields various models for large-scale magnetic
fields of particular celestial bodies, such as galaxies, stars,
and planets, which reproduce to some extent the available
phenomenology �6�. Various approaches to proper parametri-
zation were suggested �see for review �7,8��. However, the
mean-field approach seems to be insufficient because it does
not provide an in-depth insight into the evolution of the
small-scale magnetic and velocity fields, which are replaced
by turbulence parametrization.

It is desirable that the simplicity of the mean-field ap-
proach be combined with a relatively simple model of small-
scale MHD turbulence, which nevertheless would provide a
proper description of interactions of the large-scale magnetic
field with the MHD turbulence. This would allow us to avoid
the time and resource consuming calculations involved in
DNS as well as the insecure parametrizations involved in the
mean-field theories.

The shell models were suggested to describe the spectral
energy transfer �9,10�. After numerous refinements they be-
came an effective tool for description of the spectral proper-
ties of the small-scale turbulence �see for review �11��. These
models do not describe the dynamics of turbulent fluctua-
tions b and u in all details, but replace the full system of
governing partial differential equations by some simple ordi-
nary differential equations describing the spectral transfer of
energy and other relevant quantities. The shell models for
MHD turbulence were introduced in �12–14�. This approach
reveals many intrinsic features of the small-scale dynamo
action in the fully developed turbulence of conducting fluids
�15�. It also allows study of a specific case of a rotating

PHYSICAL REVIEW E 74, 066310 �2006�

1539-3755/2006/74�6�/066310�12� ©2006 The American Physical Society066310-1

http://dx.doi.org/10.1103/PhysRevE.74.066310


turbulence �16�, which, however, cannot reproduce the dy-
namics of the mean-field components.

In this paper, we combine the mean-field description of
the large scale dynamo with a shell description of the small-
scale turbulence over a large range of scales. An attempt to
use the shell models for description of the small-scale �sub-
grid� turbulence has been made in �17� in the context of the
problem of convection in a spherical layer. A simple combi-
nation of the shell model and the mean-field approach has
been suggested in �18� and was developed for the galactic
dynamo in �19�.

Of particular interest to the mean-field dynamo problems
are the mechanisms of dynamo saturation. Conventional
mean-field dynamos describe the saturation phenomenon via
quenching of dynamo governing parameters, especially �
quenching. A simple algebraic quenching implies a direct
link between the dynamo governing parameters and the
large-scale magnetic field at the same moment in time �20�.
Particular forms of algebraic � quenching are considered in
�21� �cf. also �22��. More sophisticated formulations are
based on magnetic helicity conservation and imply a dy-
namic link between the alpha effect and the magnetic field
�23–26�. An alternative way of quenching description uses
the conservation laws. The conservation of magnetic helicity
was the basis of quenching in �27–29�. In the framework of
our approach we keep all conservation laws and take into
account the energy exchange between the large scale field
and the turbulent fields to obtain quenching in a self-
consistent way.

Another obscure problem of dynamo theory is the role of
the magnetic Prandtl number, i.e., the ratio of viscosity � to
magnetic diffusivity �m. The MHD dynamo at low magnetic
Prandtl numbers has recently become a very hot topic for
discussion. The results of DNS for values of the Reynolds
number �Re� up to about three orders of magnitude show us
that the dynamo threshold is rapidly increased in the laminar
range of Re and then the saturated turbulence can stay near
Pm�const �30–32� or the critical value of the magnetic Rey-
nolds number Rm

* �const �33,34�. These very low values of
Pm are available for low-dimensional models of turbulence
like the Kasantzev model �35� or shell model. The latter
predicts also a saturation of the dynamo threshold �36�. Our
approach allowes us to start from the academic case Pm=1,
and extend our numerical experiments to a very weakly con-
ducting media �Pm�10−8�.

In this paper we consider the simplest mean-field dynamo
problem, namely the so-called “�2-dynamo.” This problem
considers the toroidal and poloidal large-scale components of
the magnetic field B on the assumption that a toroidal field is
produced from poloidal by a mechanism similar to that
which generates the poloidal component from the toroidal.
This mechanism is based on the action of a small-scale he-
lical turbulence and is called the � effect. In reality, the first
part of the dynamo cycle �generation of toroidal field from
poloidal� is provided by a more effective mechanism—
differential rotation �and therefore is called the ��-dynamo�.
We use the �2 problem as an illustrative example of our
approach, because the structure of the generated large-scale
field is simpler and each component can be described by one
mode only �37�. Thus the behavior of the large-scale field

can also be considered using the ordinary differential equa-
tions. Below, to be specific in the choice of parameters, we
shall refer to the local galactic disk dynamo problem.

The structure of the paper is as follows. The �2-dynamo
problem is described in Sec. II. In Sec. III the shell model of
MHD turbulence with a controlled injection of helicity is
introduced. The main question concerning conjugation of
these two approaches is described in Sec. IV. Here bearing in
mind the link between the shell model and the large-scale
variables, we have based our choice on the conservation laws
requiring that our model should correctly reproduce all con-
servation laws known in MHD. The crucial role of the con-
servation laws is well known, both in the context of the shell
models for pure hydrodynamics and for MHD turbulence.
The conservation laws effectively restrict the freedom in
constructing the shell models. The remaining freedom allows
some divergence between the detailed descriptions of spec-
tral properties of magnetic and velocity fluctuations, but does
not affect the basic features of the turbulence evolution. We
will demonstrate that these observations are valid for our
combined models, at least for the case of �2 dynamos. In
Sec. V we present the numerical results which concern the
saturation mechanism, the role of dynamic and magnetic
contributions to the � effect, and the dynamo action under a
wide range of the magnetic Prandtl number. A general dis-
cussion is presented in Sec. VI.

II. �2-DYNAMO

The simplest large-scale dynamo model defined in terms
of poloidal BP and toroidal BT components of the magnetic
field can be represented by the following dimensionless
equations:

dtBP = ikL�BT − kL
2�BP, �1�

dtBT = − ikL�BP − kL
2�BT. �2�

The integral scale of turbulence l is used here as the unit
of length. kL= �l /L� is the normalized wave number, where L
corresponds to the scale of the whole system �e.g., the com-
putational domain for the large-scale variables�. In principle,
we could set l equal to L by taking kL=1 and use the first
shell as basic scale which is common practice in the theory
of turbulence. We prefer to have kL as an independent param-
eter bearing in mind that in many astrophysical models of
dynamo action l should be substantially lower than L �see for
review �6��.

� describes the capacity of helical small-scale turbulence
for generation of the mean large-scale magnetic field, and �
is the effective diffusivity of the turbulent media. Thus the
poloidal field is generated from the toroidal by the alpha
effect, just as the toroidal field is generated from the poloi-
dal, and they are both affected by turbulent diffusion. This is
just the process known as the �2-dynamo.

The mean-field concept estimates � from the turbulent
energy as �=��u2� /3 and � from the helicity of turbulence
�u= �u · ��	u�� as �=−��u /3, where � is a “memory time.”
The question arises as to what quantity can be chosen for �.
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A simple estimation for � is the turnover time for the basic
scale of turbulence or its correlation time. The naive estima-
tion here is the relation �= l /u, where u is r.m.s. velocity.
Such a parametrization in the spirit of the mixing length
theory is sufficient for many astrophysical models, but it ig-
nores the spectral properties of the turbulence while our in-
tention is to take them into consideration.

A more advanced parametrization of the turbulent trans-
port coefficients � and � follows from the Kolmogorov de-
scription of turbulence as an ensemble of vortices of various
scales. Then � and � are determined by contribution from
the whole spectral range as

� =
1

3
	 ��k�E�k�dk , �3�

� =
1

3
	 ��k��u�k�dk . �4�

Here E�k� is the energy spectral density and �u�k� is the
helicity spectral density, �u=
�u�k�dk. The natural estimate
for ��k� is the turnover time of the vortex of the correspond-
ing scale or the time averaged with the energy weight. For
Kolmogorov’s turbulence E�k��k−5/3, ��k�=k−2/3 and ac-
cording to Eq. �3� � is determined by the integral scale of the
turbulence. Note that � is determined by the integral �macro�
scale even if we choose ��k�=const. The situation with � is
more delicate. The upper bound for �u�k� for Kolmogorov’s
turbulence is k−2/3. If one uses ��k�=const in Eq. �4� then �
is determined by the microscale of the turbulence. A more
adequate choice ��k−2/3 means that � as well as � are de-
termined by a macroscale.

Equations �1� and �2� result in the exponential growth of
the magnetic field provided the induction effects described
by terms with �kL are large compared to the losses �kL

2.
Saturation of the exponential growth is however impossible
for the given � and �, and some modification of their values
is required. The simplest argument is that the Lorentz force
suppresses the helicity and modifies �. This kind of dynamo
saturation is known as � quenching.

An alternative understanding of dynamo saturation is
based on the idea of a possible counteraction of the small-
scale magnetic field to the turbulent dynamo and can be pre-
sented as follows. The dynamo generated magnetic field ap-
pears to be mirror asymmetric as well as the velocity field.
The degree of magnetic mirror asymmetry can be described,
e.g., by the so-called current helicity � j = �b · j�. A magnetic
contribution �b to the � effect was suggested initially in �38�
as

� = �u + �b. �5�

This way of dynamo saturation was recently developed in
some papers �see, e.g., �21,23,27–29��. The physical meaning
of this equation can be presented as follows. � effect is as-
sociated with mirror symmetry breaking in the system. If a
magnetic field is weak the symmetry breaking is related with
the velocity field only �it gives �u�. A substantial magnetic
field can also disturb the mirror symmetry and contribute to
�, which gives �b. This concept was supported by calcula-

tion of the turbulent electromotive force in various models
�see, e.g. �24� and references therein�.

III. SHELL MODEL OF MHD TURBULENCE

Shell models are designed to describe the cascade process
over a large range of scales �wave numbers� by a chain of
variables un�t�, bn�t�, each of them characterizing all velocity
or magnetic field oscillations with wave numbers k in the
range from kn=k0
n to kn+1 �i.e., a shell of wave numbers�.
The parameter 
 characterizes the ratio of two adjacent
scales �the width of the shell� and usually 
�2. The model
includes a corresponding set of ordinary differential equa-
tions, which should reproduce the basic properties of the
motion equation. Namely, the model has to reproduce the
type of nonlinearity of the initial equations and to retain the
same integrals of motion in the dissipationless limit. Let us
note that shell models can possess positively defined inte-
grals of motion �energy, enstrophy in two-dimensional �2D�
turbulence, and the square of magnetic potential in 2D MHD
turbulence�, as well as quadratic integrals with an arbitrary
sign �the integrals of this kind are usually called “helicities”�.
The signs of the helicities are defined by the balance between
the contributions of odd and even shells to corresponding
quantity.

Let us explore the shell model of MHD turbulence, intro-
duced in �14�. The ordinary differential equations for the
shell variables are written as

�dt +
kn

2

Re
un = ikn�un+1

* un+2
* − bn+1

* bn+2
* +

1 − 



2 �un−1
* un+1

*

− bn−1
* bn+1

* � −
1


3 �un−2
* un−1

* − bn−2
* bn−1

* �� + Fn,

�6�

�dt +
kn

2

Rm
bn =

ikn


�1 + 
�
��un+1

* bn+2
* − bn+1

* un+2
* � + �un−1

* bn+1
*

− bn−1
* un+1

* � + �un−2
* bn−1

* − bn−2
* un−1

* �� + Gn.

�7�

These equations are represented in dimensionless form,
Re=Ul /�, where Re is the Reynolds number, Rm=Ul /�m is
the magnetic Reynolds number, dt is the time derivative, U is
the characteristic velocity at the turbulent integral scale, Fn
describes forces, and Gn describes currents, acting on the
corresponding scales �in the following, for the sake of brev-
ity, we will call them “forces”�. The time unit is defined as
the turnover time of the vortex on the largest turbulent scale.
Equations �6� and �7� take into account the local nonlinear
interactions only. In the dissipationless force-free limit �Fn
=Gn=0, Re, Rm→�� they conserve three quadratic quanti-
ties, which correspond to the three integrals of motion
known in 3D magnetohydrodynamics: The total energy E
=Eu+Eb �where Eu=��un�2 and Eb=��bn�2�, the cross helic-
ity �c=��unbn

*+bnun
*�, and the magnetic helicity �b=��

−1�n��bn�2 /kn�. Note that in the kinematic limit �all bn→0�
Eq. �6� also conserves the quantity �u=��−1�nkn�un�2, which
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corresponds to the hydrodynamic helicity, which is the sec-
ond integral of motion in 3D hydrodynamics. The shell
model has some proxy of helicity �the topological meaning
of helicity is lost�. However, we suppose that this “helicity-
like” integral of motion is related to � and, as will be shown
below, it works well in the sense that the model reproduces
the expected properties of �2-dynamo.

The forces Fn and Gn include several terms

Fn = fn
I + fn

C + fn
B, �8�

Gn = gn
I + gn

B. �9�

The terms fn
I and gn

I describe the external energy sources.
Because we are interested in the dynamo problem we assume
that gn

I �0. The force fn
I injects kinetic energy and maintains

the turbulent flow. We consider fn
I , acting in the two largest

neighboring shells n=0 and n=1, as a complex value with
constant module and phase changing randomly after each tc
unit of time �tc can be considered as a correlation time�.

In the case of pure hydrodynamics this force is usually
taken in a simpler form f0

I =c�1+ i�, which provides a chaotic
solution with a stable spectral energy flux and robust statis-
tical characteristics �15,39�. The MHD system under the
same forcing and weak initial magnetic energy describes the
small-scale dynamo processes leading to a developed MHD
turbulence, with equipartition of the magnetic and kinetic
energy and spectral index close to “−5/3” �14�. This state
seemed to be statistically stable, but long-time simulations
have shown that after relatively long evolution �hundreds of
turnover times� this state is often replaced by another one,
characterized by a high level of cross correlations ��unbn�
��un

2���bn
2��, steep spectra, and blocked spectral flux

�40,41�. The force with a randomized phase allows us to
avoid these highly correlated states.

The terms fn
B and gn

B describe the reaction of the large
scale magnetic field onto small scale variables. They will be
defined in the next section.

Figure 1 shows a typical time evolution of hydrodynamic
helicity �u and normalized cross helicity �*

c =�c / �EuEb�1/2

�which characterizes the level of un and bn correlation�, and
the spectra, obtained from numerical simulations of Eqs. �6�
and �7� for Re=Rm=106. Note that both characteristics dis-
play intensive irregular oscillations, while their mean value
is rather close to zero. The mean value �*

c is about −0.1
which directly indicates an uncorrelated behavior of the
magnetic and kinetic variables. For the given time interval
the mean value of helicity was ��u�=−0.4 and shows that the
model displays a weak helical �on the average� behavior. For
longer averaging times this value becomes lower �see Fig. 2�,
but remains stably negative. This asymmetry reflects a ge-
neric shortcoming of the shell models: The discrete nature of
these models violates the balance of the odd and even shells
when the spectrum decreases with k.

It is commonly believed that the fully developed turbu-
lence is mirror symmetric, namely nonhelical, unless some
external sources of mirror asymmetry exist. In astrophysical
applications of the mean-field dynamo models one expects
the occurrence of helical turbulence, the source of which is

thought to be related to the rotation of celestial bodies. In the
framework of shell models conformable to the definition of
helicities, “helical” means the asymmetry of even and odd
shells. In the model under discussion a source of helicity is
necessary, which is directly controlled by some parameter.
To this end we introduce a force

fn
C = C�− 1�n �un�2 + �un+1�2

�un�2
un, �10�

which redistributes the energy of odd and even shells without
any input or output of total energy. The parameter C specifies

FIG. 1. Simulations of the shell model of forced MHD turbu-
lence. Evolution of �a� hydrodynamic helicity �u and �b� normalized
cross helicity �*

c. The energy spectra �c� for the velocity field Eu

�black dots� and the magnetic field Eb �gray dots�. The solid line
shows the Kolmogorov spectrum slope.
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the degree of mirror asymmetry, defining the part of redis-
tributed energy. Figure 2 shows that ��u��C in a wide range
of C. The large value of C ��C��0.1� destroys the turbulent
cascade and the small-scale motions occur at a considerable
distance from the Kolmogorov turbulence. Note, however,
that the turbulence in rapidly rotating bodies, like the Earth,
is also far from Kolmogorov. The mean value of the current
helicity �� j�, which provides the magnetic contribution to the
alpha effect, is also shown in Fig. 2. Although the force fC

does not directly affect the variables Bn, the level of �� j� is
mainly higher than ��u�.

Let us note that the model under consideration produces a
large-scale magnetic field with vanishing magnetic helicity
in a thin disk. It means that the main effect leading to mag-
netic contribution to the � effect, i.e., sharing �redistribution�
of magnetic helicity between the large-scale and small-scale
magnetic variables, does not work in the model �recall that it
is just the magnetic helicity that is conserved by the MHD
equations�. According to naive expectation, we should not
obtain any significant magnetic contribution to the � effect.
Because the dynamics of the magnetic and current helicity is
rather complicated, the analytical papers traditionally ignore
the possibility of creating the magnetic � effect for large-
scale magnetic fields with vanishing magnetic helicity �cf.
however �42��.

IV. COMBINED MODEL

The model is based on the combination of large-scale
equations �1� and �2� and shell equations �6� and �7�. The
coefficients � are calculated from the shell model as well as
the turbulent diffusivity �:

�u = −
1

3�
n

�n�n
u = −

1

3�
n

�− 1�n�nkn�un�2, �11�

�b =
1

3�
n

�n�n
j =

1

3�
n

�− 1�n�nkn�bn�2, �12�

� =
1

3�
n

�n�un�2 +  , �13�

where  describes the ohmic dissipation �in nondimensional
units =Rm

−1� and the correlation time �n for a given scale n
is taken from Kolmogorov’s estimate.

The terms Fn and Gn in shell equations �6� and �7� should
be specified taking into account the energy exchange be-
tween the large and small scales. It is important to allow for
the energy, which is used by turbulence to generate the large-
scale magnetic field. It is evident that this energy must be
removed from the turbulence by the appropriate correction of
variables un. This correction is provided by terms fn

B and gn
B.

We proceed from the simplest reasoning that each shell
must lose as much energy as it produces in the large scale
magnetic field due to the � effect. Part of the large-scale
energy EB= �BT�2+ �BP�2 generated by the � effect is

En
�u

= 2ikL�n
u�BTBP

* − BPBT
*� , �14�

En
�b

= 2ikL�n
b�BTBP

* − BPBT
*� . �15�

On the other hand, the large-scale magnetic field loses en-
ergy due to turbulent diffusivity �the � effect�. The turbulent
velocity field transfers this energy

En
� = kL

2�nEB �16�

to the energy of small-scale magnetic fluctuations. This ex-
change should also obey the second conservation law con-
cerning the magnetic helicity. Because the large scale mag-
netic field is nonhelical according to the governing equations
of the �2-dynamo, this conservation law requires that the
forces fn

B and gn
B should not induce magnetic helicity in the

small-scale magnetic field. The third condition is provided
by the total cross helicity conservation law. Then the forces
fn

B and gn
B are defined as

fn
B = −

En
�u

Bn

Un
*Bn − UnBn

* , �17�

gn
B = −

UnQn

Bn
*Un − BnUn

* , �18�

Qn = � �En
�b

+ En+1
�b

− En
� − En+1

� �

 + 1

, n even,

�En
�b

+ En−1
�b

− En
� − En−1

� �


 + 1

, n odd. � �19�

Thus our combined model consists of Eqs. �1� and �2� for
the large-scale magnetic field and Eqs. �6� and �7� including
the forces �8� and �9� for the small-scale turbulence. It should
be noted that this system in the limit fn

I →0 �no energy input�
and Re,Rm→� �no dissipation� conserves the total energy
E=EB+Eu+Eb.

Based on the proposed model we carried out numerical
simulation using the fourth order Runge-Kutta method with a
fixed time step �=5	10−5 for the following set of param-
eters: 
= ��5+1� /2, n=1, . . . ,30, Re=Rm=106, and the cor-

FIG. 2. Mean hydrodynamic helicity ��u� �black� and mean cur-
rent helicity �� j� �gray� versus the parameter C defining the mirror
asymmetry of the shell model. No mean magnetic field is present.
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relation time for the force �c=0.01. All simulations were per-
formed for the following set of governing parameters: C
=0, ±0.01, ±0.02, ±0.04, ±0.08, ±016, ±0.32 and kL
=1/2 ,1 /4 ,1 /8 ,1 /16,1 /32. In figures given below only a
small �but instructive� part of the time series obtained is
shown.

V. RESULTS

First, we include in our consideration all saturation
mechanisms except the magnetic contribution to the � effect.
The reason is that, in dynamo theory, the physics and param-
etrization of the magnetic � effect is far from completely
understood. It looks reasonable to separate the role of the
magnetic contribution to the � effect from the other contri-
butions as far as possible. Shown in Fig. 3 are some typical
time series for the kinetic Eu and magnetic Eb energy of the
turbulent �small-scale� fluctuations and of the large-scale
magnetic energy EB evolution. The results are given for in-
creasing contribution of the force fn

C and for three values of
kL.

The general result is that the small-scale magnetic energy
rapidly, i.e., in several turnover times, achieves equipartition
with the kinetic energy while the evolution of the large-scale
field is much slower and depends on the intensity of the
mirror asymmetry of the small-scale variables and on the
scale kL.

As might be expected from the kinematic dynamo theory,
the magnetic field decays at weak � effect and grows when it
is strong. The critical value of �, which defines the threshold

of the large-scale magnetic field self-excitation, becomes
lower for smaller values of kL. The reason is that the genera-
tion of the large-scale magnetic field due to the � effect is
proportional to kL while the dissipation due to turbulent dif-
fusion is proportional to kL

2.
Note that C=0 gives a nonvanishing ���, which suggests

that a large-scale magnetic field can be excited. It was found
that �u is no longer symmetric with respect to C in the pres-
ence of large-scale magnetic field, even when this field is
weak. In this sense, a weak large-scale magnetic field affects
the mean-field dynamo substantially. We found that the value
C=−0.03 provides ����0, so the dynamo action is approxi-
mately symmetric with respect to C=−0.03.

In contrast to the kinematic models, the excitation thresh-
old in the model is not abrupt. For a substantial parameter
range the large-scale magnetic field demonstrates a marginal
behavior where epochs of temporal growth and epochs of
temporal decay occur intermittently. A reverse reaction of the
growing magnetic field onto the generation becomes substan-
tial for a rather low large-scale magnetic field strength. How-
ever, the growing large-scale magnetic field usually reaches a
level comparable to the equipartition level.

A decrease of kL results in a more effective generation for
any C, but essentially increases the time scale of the large-
scale energy evolution. The time series become more and
more smooth as might be expected under the two-scale ap-
proach.

If kL becomes large �comparable with unity� the time
scale for the large-scale magnetic field decreases and be-
comes comparable with the time scales typical for turbulence
on the integral scale. Then the mean-field dynamo concept

FIG. 3. �Color online� Time series for the mean magnetic field energy EB �thick black line�, small-scale magnetic energy Eb �thin light
line, or green line in color version�, and kinetic energy Eu �thin dark line, or red line in color version�. The horizontal rows correspond to
C=0, 0.04, and 0.16 �from top to bottom�. Vertical columns correspond to kL=1/2, 1 /8, and 1/32 �from left to right�. The magnetic field
does not contribute to the � effect ��b=0�.
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becomes inadequate. A smooth behavior of the large-scale
variables expected under the mean-field approach is achieved
provided that kL becomes small enough. In practice, the
value kL�0.3 seems to be an upper limit for applicability of
the mean-field concept. Note that the galactic turbulence has
kL compatible with this requirement �l�100 pc and thick-
ness of the galactic disk L�1 kpc�.

If C increases, the corresponding increase of kinetic he-
licity intensifies the generation process. For high C and low
kL the energy of the large-scale magnetic field becomes even
larger than the kinetic energy of the turbulence responsible
for its generation �see the right hand panel in the lower row
of Fig. 3�. This state is often referred to as superequiparti-
tion.

A. Nonlinear hydrodynamic stabilization of dynamo

From Fig. 3 we conclude that the large-scale generation
somehow arrives at a saturated state for any value of the
governing parameters C and kL. One of the supposed mecha-
nisms of dynamo saturation implies direct suppression of the
� effect by the large-scale magnetic field �the so-called �
quenching�. Our aim now is to test this concept in the frame
of our model. Recall that up to now we have excluded the
term �b from consideration.

Before proceeding to particular results we will point out
several obstacles to this verification. The mean-field theory
considers the mean value of � whereas in our treatment we
deal with the current value, which seems to be consistent
with the physical nature of the problem. The saturation ap-
pears as a dynamically stabilized state, which we analyze
studying the cross correlations of � and the energy of the
large-scale magnetic field.

The cross-correlation function for the large scale magnetic
energy and �u is defined as

���� =
	 ẼB�t��̃u�t + ��dt

�	 �ẼB�2�t�dt	 ��̃u�2�t�dt1/2 , �20�

where the tilde means the deviation from the mean value.
The cross correlation is calculated using a very long time
series �about 20000 turnover time units�. Figure 4 shows this
function for C=0.08 and two values kL=1/2 and kL=1/16.
The figure shows that the cross correlation is mainly positive
for ��0 and negative for ��0. The correlation vanishes
when the time lag ��� becomes large enough. The large kl, the
narrower the range where the cross correlation exceeds the
noise.

For negative � �then EB follows �� the negative �u leads
to generation of EB with a relatively short characteristic time
shift �the negative peak appears at �=−2.5 turnover times for
kL=1/2 and at �=−7.5 turnover times for kL=1/16�. For
positive � �� follows EB� the reverse reaction is much slower
and we get a positive maximum for 10���250 �kL

=1/16�. It means that EB produces positive � which coun-
teracts the dynamo. For kL=1/2 the time of the positive re-
action is shorter �up to t�50�. However, the structures of

both cross-correlation functions are similar. Let us recall that
by definition the sign of � is opposite to that of the hydro-
dynamic helicity �u �see Eq. �7��, so that a positive C leads
to production of a negative mean �.

From the above follows the conclusion that because the
instantaneous correlation of the magnetic field and � van-
ishes, the naive algebraic quenching is inadequate for the
problem. This looks reasonable since the model includes a
physical process responsible for quenching while the mean-
field theory ignores time scales shorter than those of the
large-scale variables. The pronounced �although moderate�
lag in the cross correlation means that quenching is described
by a differential equation. A reconstruction of this equation
from the shape of the cross-correlation function would be an
obvious overestimation of the abilities of the model. Though
the maximal values of the cross-correlation are rather mod-
erate they prove to be meaningful because we deal with fluc-
tuations around a steady state. A similar time lag between the
magnetic field growth and � effect has been observed in
DNS of the disk ��-dynamo �4�.

B. The role of the magnetic contribution to the � effect

To determine the contribution of the magnetic field to the
alpha effect we have performed simulations taking into ac-
count only the magnetic part of the � effect �=�b ��u�0�.
Figure 5 shows the time series of the kinetic Eu and magnetic
Eb energy of turbulent �small-scale� pulsations and of the
large-scale magnetic energy EB evolution for the same set of
parameters C and kL as was used in Fig. 3. The general shape
of the large-scale magnetic field evolution remains basically
the same as for the hydrodynamic alpha effect. For small
values of C the generation is even more effective �compare
the first rows in both figures�. By contrast, at large C �last
rows in Figs. 3 and 5� the magnetic alpha effect is less ef-
fective for large-scale field generation.

This rather artificial experiment confirms the concept that
the dynamo action can occur via magnetic contribution to the
� effect only. This point of view was advanced by Vainshtein
�43� �see also �44��.

As a next step we performed the same set of simulations
for the full model ��=�u+�b�. The corresponding time se-
ries are shown in Fig. 6.

FIG. 4. Cross-correlation function ���� of the large scale mag-
netic field and �u for C=0.08; kL=1/2 �solid� and kL=1/16
�dashed�.
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In general, we can draw the conclusion that there ar
e no drastic differences between Figs. 3, 5, and 6. The
growth of the magnetic field at the earlier stage �when the
energy of the large-scale field remains much smaller than
the turbulent energy� is essentially faster in the case with

both contributions to �. A similar observation was made in
�45� for the ��-dynamo. In contrast, at saturated states the
mean value of the large-scale magnetic field is visibly
weaker. In any case, nothing like catastrophic � quenching
occurs.

FIG. 5. �Color online� Time series for the mean magnetic field energy, small-scale magnetic energy, and kinetic energy for the same
parameters as in Fig. 3 but under the constraint that only the magnetic field contributes to the � effect ��u=0�. The notation is the same as
in Fig. 3.

FIG. 6. �Color online� Time series for the mean magnetic field energy, small-scale magnetic energy, and kinetic energy for the same
parameters as in Fig. 3, but in the case with both contributions to the � effect ��=�u+�b�. Notation is the same as in Fig. 3.
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C. �2-dynamo at low magnetic Prandtl numbers

The above discussion refers to the case where Pm�1. For
cosmic turbulence, Pm differs substantially from 1. When
designing the laboratory dynamo experiments, we have to
restrict ourselves to very low values typical for liquid metals
Pm�10−5. This is the reason why the dependence of the
above results on Pm is very interesting. There is a widespread
view that the case of Pm�1 is basically similar to that of
Pm=1 while the case of Pm�1 is a topic of intensive discus-
sions �34,36,46�. The point is that the spectral range of the
turbulent magnetic field is much smaller than that of the
turbulent motion when Pm�1. As a result, velocity fluctua-
tions coexist with magnetic fluctuations within one spectral
range while the other spectral range contains velocity fluc-
tuations only. For a very low Prandtl number the magnetic
spectrum can vanish and the turbulence becomes purely hy-
drodynamic.

We study the model with the Prandtl numbers ranging
from 10−8 up to 102 and fixed parameters Re=106, C=0.08,
and kL=1/16. In Fig. 7�a� energy sharing in the saturated
state is plotted as a function of Pm. The mean values of the
kinetic energy and the energy of small- and large-scale mag-
netic fields are given for various Pm. The time series and
spectra for several typical values of Pm are shown in Fig. 8.

First of all, the small-scale Eb and large-scale EB magnetic
energies show a rather smooth dependence on Pm. However,
the level of the kinetic energy attained depends on Pm. The
small-scale dynamo does not work at Pm�10−4 �see the
spectra in Fig. 8, right-hand bottom panel�, while large-scale
magnetic field is generated already at Pm�10−7. Note that
the most efficient generation of the large-scale magnetic field
happens just for 10−7� Pm�10−4, that is, the large-scale

FIG. 7. Mean values of turbulent kinetic energy �empty boxes�,
turbulent magnetic energy �filled diamonds�, and large-scale mag-
netic energy �crosses� versus magnetic Prandtl number. Re=106,
C=0.08, and kL=1/16. �a� The case with both contributions to the
� effect ��=�u+�b�; �b� magnetic field does not contribute ��
=�u�.

FIG. 8. �Color online� Time series �top row� for the mean magnetic field energy, small-scale magnetic energy and kinetic energy,
�notation is the same as in Fig. 3� and energy spectra �bottom row� of magnetic �gray circles� and kinetic �black circles� fields for the
magnetic Prandtl numbers Pm=3	10−3, 10−5, and 3	10−8 �from left to right� and Re=106. The values of the large-scale magnetic field
energy are shown by large gray dots.
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magnetic field exceeds the equipartition level. In this range
only the hydrodynamic � effect operates. Although the
small-scale dynamo fails, Eb does not vanish completely in
this range of Pm because the turbulent diffusion converts a
part of the large-scale energy EB into small scale. The large-
scale magnetic energy generation ceases at Pm�10−7 be-
cause the magnetic Reynolds number becomes too small for
any dynamo action. Note that the kinetic energy spectrum
becomes very irregular in the large-scale range �Fig. 8, right-
hand bottom panel� due to an accumulation of hydrodynamic
helicity �u, which is provided by the force fC and is no
longer involved in the dynamo action.

A decrease of EB occurs at Pm�10−4, as soon as the mag-
netic part of the � effect becomes comparable with the kine-
matic. We thus conclude that the magnetic contribution to the
� effect begins to counteract the hydrodynamic contribution
to the � effect provided that Pm belongs to this range of Pm.
In other words, an effective � quenching occurs. To clear up
once more the role of magnetic contribution into the � effect
we have repeated the simulation including the action of �u

only �see Fig. 7�b��. Here complete equipartition is observed
�EB tends to Eu for Pm�1�. Kinetic and magnetic small-scale
fields achieve some balance and provide a constant level of �
effect.

VI. SUMMARY AND DISCUSSION

We have introduced a simple model of the so-called
�2-dynamo, which combines the mean-field description of
the large-scale magnetic field with the shell representation of
the small-scale magnetohydrodynamic turbulence. Con-
structing the model we strictly fulfill the requirement of
keeping all conservation laws known in MHD which effi-
ciently restricts the variety of possible closures. The model
obtained demonstrates a behavior consistent with the basic
expectations of the dynamo process. In other words, the shell
model technique, being a natural generalization to the Kol-
mogorov description of turbulence, has demonstrated its
ability to provide an adequate description of mean-field dy-
namo action.

The model was applied to investigate such controversial
issues of mean-field dynamo theory as � quenching and the
role of the magnetic Prandtl number, in which an adequate
description of the interactions between the large and small
scales becomes crucial. The model gives no evidence for a
catastrophic � quenching of dynamo action at values of the
large-scale magnetic energy that approach equipartition, or
low magnetic Prandtl number.

On the other hand, the model reveals some unknown fea-
tures of the �2 dynamo. In particular, we have established
that the model exhibits a substantial magnetic contribution to
the � effect in spite of magnetic helicity conservation and the
absence of magnetic helicity separation. The importance of
this possibility has long been ignored by investigators in this
area. It was shown that the large-scale magnetic field genera-
tion can be based on magnetic helicity only.

One of the most important findings of our study is the
dynamic nature of saturation mechanism of the dynamo ac-
tion that is realized. The simultaneous cross correlation of �

and the large-scale magnetic field energy EB is negligible,
while the coupling between � and EB becomes substantial
for moderate time lags.

An unexpected result is the behavior of the large-scale
magnetic energy with variation of Pm. Diminishing of the
magnetic Prandtl number does not have an inevitable ill ef-
fect on the magnetic field generation. The most efficient
large-scale dynamo operates under relatively low Prandtl
numbers—then the small-scale dynamo is suppressed and a
decrease of Pm can lead even to superequipartition of the
large-scale magnetic field �i.e., EB�Eu�. In contrast, the
growth of Pm does not promote the large-scale magnetic field
generation. The growing counteraction of the magnetic �
effect reduces the level of the mean large-scale magnetic
energy at the saturated state. Note that verification of this
result by direct numerical simulation is desirable.

Finally let us return to the question of how the dynamo
threshold depends on the magnetic Prandtl number. Draw the
neutral curves for large-scale and small-scale dynamos in the
Re-Rm plane �see Fig. 9�. This figure summarizes the results
of numerical simulations performed for a wide range 10
�Re�107 and 10−8� Pm�102. Large black circles denote
the critical value Rm

* obtained for the large-scale dynamo and
small black circles correspond to the threshold of the small-
scale �turbulent� dynamo. Note that the value of both Rey-
nolds numbers for the neutral curve has been defined using
the mean value of the kinetic energy, namely R�x=�EuRx
�where Rx is Re or Rm�.

Recently, the dependence of the small-scale dynamo
threshold on the magnetic Prandtl number was intensively
studied in DNS �30,31,33,34,46�. The results concern the
range 1�Re�13 400.

The authors of papers in �30,31� found an increase of the
critical magnetic Reynolds number for the range 54�Re
�3500 �corresponding points are shown in Fig. 9 by
crosses�, which argues for the existence of a limit Pm
�const, that makes impossible the small-scale dynamo ac-
tion at low magnetic Prandtl numbers. The results of the
paper in �34� shown by open circles support the increase of
Rm

* at moderate Reynolds numbers �from about 30 up to

FIG. 9. Critical magnetic Reynolds number Rm
* for the large-

scale �2-dynamo �large black circles� and small-scale turbulent dy-
namo �small black circles� versus Reynolds number Re �C=0.08
and kL=1/16�. Results of DNS by Schekochikhin et al. �31� are
shown by crosses; results of Ponty et al. �34� are shown by open
circles. SM results of Stepanov and Plunian �36� are given by stars.
The thin black line corresponds to Pm=1.
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about 500� but show a kind of saturation at higher Reynolds
numbers �500�Re�3500�. This is consistent with the view
that a limit Rm

* �const should exist at high Reynolds number
�similar results are obtained in �33�—we do not show them
in the figure because they would make the figure unclear�.
Our simulations give a straight horizontal line Rm

* =80±5 for
the range 100�Re�107. Note that all the DNS mentioned
above studied a pure small-scale dynamo �without a large-
scale� in nonhelical turbulence. In our case the velocity field
is essentially helical and the threshold of small-scale dynamo
action always occurs in the presence of working mean field
dynamo. However, the study of small-scale MHD dynamo at
low Prandtl numbers in the frame of a shell model of non-
helical turbulence �36� gives similar results �shown in Fig. 9
by stars�—Rm

* does not depend on the Reynolds number
�equivalently, magnetic Prandtl number� for developed tur-
bulence �Re�100�.

Note that the estimates for Rm
* obtained from various mod-

els of MHD turbulence are quite similar in spite of the fact
that the models are not identical. We believe that this means
that the properties of a small-scale dynamo are more or less
independent of the coexisting mean-field dynamo. The agree-
ment between the estimates for Rm

* obtained in the frame of
the shell models of turbulence and those from DNS support
the conclusion that the shell models provide an adequate
description of small-scale dynamos. Then our estimates for
Re�1000 where DNS is impossible mean that the small-

scale dynamo remains active for very low magnetic Prandtl
numbers and moderate magnetic Reynolds numbers. It
should be mentioned that two-point closures also give dy-
namo threshold independence of Pm at small Pm �47�.

As for the threshold of the �2-dynamo itself �large black
circles in Fig. 9�, there is a monotonous decrease of the criti-
cal magnetic Reynolds number for low and moderate Rey-
nolds numbers �up to Re about 104�. For fully developed
turbulence �Re�104� the threshold does not depend on the
Reynolds number �as well as on the magnetic Prandtl num-
ber�. Let us note that the critical values of Rm obtained are
unusually small �all less as unity� because the Reynolds
numbers are defined by the turbulent scale. The rescaling
Rm�=2�Rm /kL�102Rm gives reasonable estimates for the
critical magnetic Reynolds number for the mean-field dy-
namo. We conclude that the mean-field dynamo can excite
the magnetic field for very moderate magnetic Reynolds
numbers provided the mean hydrodynamic helicity is
present.
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